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Abstract The SARS-CoV-2 pandemic has almost 56
million confirmed cases resulting in over 1.3 million
deaths as of November 2020. This infection has proved
more deadly to older adults (those >65 years of age) and
those with immunocompromising conditions. The
worldwide population aged 65 years and older is in-
creasing, and the total number of aged individuals will
outnumber those younger than 65 years by the year
2050. Aging is associated with a decline in immune
function and chronic activation of inflammation that
contributes to enhanced viral susceptibility and reduced
responses to vaccination. Here we briefly review the
pathogenicity of the virus, epidemiology and clinical
response, and the underlying mechanisms of human
aging in improving vaccination. We review current
methods to improve vaccination in the older adults using
novel vaccine platforms and adjuvant systems. We con-
clude by summarizing the existing clinical trials for a
SARS-CoV-2 vaccine and discussing how to address

the unique challenges for vaccine development present-
ed with an aging immune system.
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Introduction

The United Nations estimates that by 2050, the size of
the global over-60 population will exceed the number of
younger individuals [1]. Global reductions in birth rate,
coupled with reduced mortality, have increased life
expectancy in developed and developing nations [2].
Aging is associated with the remodeling of the immune
system, also known as immunosenescence, leading to
more severe consequences of bacterial and viral infec-
tions as well as decreased protection following vaccina-
tion [3]. Immunosenescence is sustained by this multi-
faceted immune remodeling of the innate and adaptive
branches of the human immune system that is yet to be
adequately studied. Unfortunately, current vaccine strat-
egies and platforms do not sufficiently protect older
individuals [4]. The development of efficient ap-
proaches could substantially improve morbidity and
mortality rates for these unprotected people. In
March 2020, the World Health Organization (WHO)
and Centers for Disease Control (CDC) declared a pan-
demic for the coronavirus, Severe acute respiratory syn-
drome (SARS-CoV-2) also known as coronavirus dis-
ease or COVID-19. Indeed, the case fatality ratio for
those over 75 years old is 14.2%, while for those that are
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younger even by just 10 years, that number is signifi-
cantly less at 4.87% [5]. The high fatality ratio of
COVID-19 for those over 75 years old highlights the
need for improved vaccine responses as part of a multi-
faceted approach to healthy aging. To do this, we must
investigate the implications of aging on the innate and
adaptive immune system function and explore the fun-
damental mechanisms that drive the aging process. We
will summarize findings on age-related immune dys-
function to viral infections from human studies and its
impact on the immune response to SARS-CoV-2. Ad-
ditionally, we summarize and highlight novel directions
for vaccination strategies that will expand older adult’s
protection against viral infections.

Immunological basis of susceptibility
to SARS-CoV-2 in older adults

Immunosenescence, inflammaging, and SARS-CoV-2

Alterations resulting from aging in the innate and sig-
naling pathways have a crucial role in what is called
“inflammaging” or the chronic basal production of pro-
inflammatory cytokines like interleukin-6 (IL-6), tumor
necrosis factor-α (TNF-α), and IFNs. Inflammaging
can predict frailty and mortality in those aged 65 years
and older when compared with counterparts without
chronic inflammation [6]. Inflammaging can arise from
different sources including accumulation of self and
altered molecules from damaged or dead cells which
are then recognized by receptors of the innate immune
system. This process, undergone by immune and non-
lymphoid cell populations, fuels the progression of
chronic inflammation and aging [6]. Senescent non-
lymphoid cells secrete inflammatory cytokines,
chemokines, matrix metalloproteinases (MMPs), and
growth factors which are collectively known as the
senescence-associated secretory phenotype or SASP.
SASP alone can cause organ dysfunction in aged indi-
viduals [7]. Recent studies have shown that this chronic
activation and excessive inflammation can inhibit im-
munity. In illustrating this point, one study reports that
the inhibition of the mTOR pathway, and therefore the
inhibition of pro-inflammatory cytokines, can improve
influenza vaccine response with decreased rates of in-
fection in older adults subjects [8]. Other studies have
reported reduced baseline inflammation in older adults
with increased response to the shingles vaccine after p38

mitogen-activated protein (MAP) kinase inhibition.
This increased response might be due in part not only
by the reduction of the influx of inflammatory mono-
cytes but also by improving the memory T cell response
in the skin [9]. Put together, these studies suggest tools
for combatting immunosenescence and have implica-
tions for immunity of older individuals who are infected
with other viral infections including SARS-CoV-2
which are particularly fatal for them. Due to an in-
creased inflammatory environment resulting from the
high level of background cytokine activation, an atten-
uated vaccine response is observed, leading to obvious
challenges in vaccine development with regard to older
adults. The following sections will discuss the effect of
age on the function and phenotype of innate immune
cells in human studies whose activity can be targeted to
improve vaccination strategies/responses.

Remodeling of the innate immune system with aging

The phagocytic ability of macrophages from aged indi-
viduals was shown to decline with decreased levels of
macrophage-secreted chemokines MIP-1α, MIP-1β,
MIP-2, and eotaxin and reduced phosphatidylinositol-
2-kinase protein kinase B (PI3K-AKT) and cyclic
GMP-AMP synthase stimulator of interferon genes
(cGAS-STING) signaling [10–12]. West Nile Virus
(WNV), another ssRNA virus like SARS-CoV-2, has
increased pathogenicity for older adults. Kong et al.
found that infection with WNV downregulates TLR3
in monocyte-derived macrophages from older donors.
This mechanism, involving impaired signaling between
DC-SIGN and STAT-1, results in increased and
sustained cytokine levels which may account for the
increased severity of WNV in older adults [13, 14].
Interestingly, a study did show that the deficits in mac-
rophage function might not be intrinsic owing to the
observation that when macrophages were removed from
the “inflammaging” environment, their response was
restored [15].

Overall, studies have not found a difference with age
in the total number of monocytes during a baseline state
but have found an increase in the number of
CD14dimCD16+ monocytes with an attenuated activa-
tion to PRR ligation [16–18]. Several age-related de-
creases specifically in response to different TLR ligation
have been observed in monocytes from older individ-
uals including TLR 7/8 [19], RIG-I and TLR 3 [20], and
TLR 9 [21] pathways. Monocytes from aging human
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donors have been shown to have reduced RLR signaling
and impaired type I IFN response to IAV infection,
although this group reports preserved inflammatory cy-
tokine production and inflammasome responses [22].
Although there is conflicting data on whether TLRs
are increased, decreased, or remained the same between
young and old, any change in these pathways leads to
altered signaling, leading to dysregulation of pro-
inflammatory cytokine production. It is more important
to consider monocytes as different subsets in studies
because of their widely varied phenotypes and func-
tions. In a recent study investigating transcriptional
and functional differences of monocyte subsets between
young and old individuals, the group found that at
baseline, without stimulation, surface expression of
TLR3, TLR4, and TLR7 was comparable between
young and older age groups. However, after stimulation
with agonist to these TLRs, transcription and production
of key pro-inflammatory cytokines (IFNγ, IFNα, IL-
1β) and important recruitment chemokines (CCL20 and
CCL8) were decreased in all subsets [23].

The initiation and control of the immune response
depends heavily on the function of dendritic cells (DCs).
Their role in bridging innate and adaptive immunity in
aging, however, is poorly understood in humans. In
response to TLR 3, TLR 7/8, and TLR 9 ligand stimu-
lation, primary mDCs (cDC1) and pDCs had lower
levels of IL-6, IL-12, and TNF-α and surface expression
of the TLRs but higher basal levels when compared with
young donors [24]. Other studies have shown that in
response to IAV infection and West Nile infection
(WNV), pDCs from older adults are decreased in fre-
quency and have decreased type I IFN production,
whereas other DC populations are preserved [25]. One
group found that monocyte-derived DCs (MDDCs)
showed an excessive increase in pro-inflammatory
TNF-α and IL-6 production after TLR4 or TLR8 stim-
ulation or self-DNA exposure, indicating the cGAS-
STING pathway [26] signifying a dysregulated path-
way. However, a decrease in TLR signaling is not the
only case in aging. One study found a decrease in CD80/
CD86 expression and type I IFN production in MDDCs
after WNV infection. This alteration occurs with im-
paired induction of STAT1 and IRF7 expression with
similar findings in primary pDCs [27, 28]. It has also
been shown that SARS-CoV infects DCs resulting in
further enhancement of pro-inflammatory cytokine se-
cretion contributing to a further damaging response
[29]. Recent studies from October identified impaired

DC maturation and subsequent T cell-mediated re-
sponses in response to SARS-CoV-2 infection [30,
31]. More research needs to be done to determine if
poor vaccine response can be overcome with additional
agonist treatment. The age-related reductions in expres-
sion and activation of TLR, RLR, and inflammasome
pathways have likely contributed to defects in response
to viral infections resulting in age-linked susceptibility
to relevant viruses like IAV and now, SARS-CoV-2.

Remodeling of the adaptive immune system with aging

As with the other components of the immune system, T
cells experience a progressive decline with age. In part,
the changes in T cells with age can be linked to the
involution of the thymus that leads to changes in the
proportions of naive and memory T cells with the result
being a skewing toward memory T cells in older adults
[32–34]. CD4+ and CD8+ T cell compartments vary in
their ability to maintain naive T cells and a diverse TCR
repertoire with age. While CD8+ T cells show a signif-
icant decrease in the level of naive T cells in the blood
with advanced age, both CD4+ and CD8+ T cells show a
significant decrease in naive T cell frequency in second-
ary lymphoid sites [35].While it is unclear why there are
differences in the ability to maintain naive CD4+ and
CD8+ T cells at different lymphoid sites, it has been
suggested that telomere shortening due to continued
peripheral proliferation eventually leads to exhaustion
of proliferative capability and the eventual depletion of
the overall naive T cell pool observed in older adults
[36, 37]. The decline in the overall number of naive T
cells with age ultimately leads to a reduction in TCR
clonal diversity, especially in CD8+ T cells [38, 39].
Further skewing of the TCR repertoire occurs as mem-
ory T cells continue to accumulate with age due to
clonal expansion after each encounter with cognate
antigen, leading to an overall decrease in TCR diversity
and overrepresentation of certain memory T cells [40,
41].

One cause of ineffective vaccine response is that
recalled memory cells in older adults cannot generate
functional effector responses. One example of this can
be seen in defects in Granzyme B release from CTLs
isolated from CMV+ older adults [42] as well as induc-
tion of Granzyme B production following ex vivo IAV
challenge [43]. This effector function decline may also
be due to T cell exhaustion. CD8+T cell exhaustion has
been described by Song et al. as an elevated number of
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TIGIT+CD8+ T cells from older adults.While these cells
have retained their proliferation capacity, they have
impaired TNF-α, IFN-γ, and IL-2 production [44].
Since cellular immunity is strongly associated with pro-
tection from IAV, evenmore so than humoral responses,
impairment of this function will strongly impact infec-
tion and vaccination outcome. While CD8+ T cells
appear to be impacted to a greater degree by aging,
CD4+ T cells also face altered and declining function
with age. Nevertheless, this shift may have negative
effects on vaccination success in older adults.

With age, the ability of the immune system to mount
type 1 and type 2 responses appears to be altered. While
several studies have shown that the aged immune re-
sponse is shifted toward a Th2-dominant response,
others have shown that the immune response of older
adults is skewed towards a Th1-dominant response [45,
46]. It remains unclear whether the aged immune re-
sponse shifts either way. Rather, it is more likely a
change in kinetics with a Th1 response peaking earlier
in infection or vaccination with a shift toward Th2.
Nevertheless, this shift may have negative effects on
vaccination success in older adults. While the character-
istics of Th1 and Th2 responses are altered with age,
other subsets of helper T cells are also impacted by
aging including CD4+ T-follicular helper (Tfh) and T-
regulatory cells (Tregs). Both subsets are important in a
functional adaptive response. Older adults have lower
frequencies of circulating Tfh which correlate with sig-
nificantly lower IgG levels during co-culture with B
cells from young adults [47]. In addition to potential
intrinsic defects in circulating Tfh cells, chronic activa-
tion in older adults may drive exhaustion of these cells
and lead to a poor response to vaccination that is ob-
served. Conversely, the frequency of Tregs is the in-
creased with age [48], although Tregs appear to main-
tain their functionality during the aging process. This
increase in Treg frequency and maintenance of their
function in older adults may further suppress the already
declining immune response generated by CD8+ and
CD4+ T cells in older adults individuals [49]. This loss
could play a role in the reduced efficiency of vaccination
that is observed in the older adults as it may prevent a
robust immune response [50].

Although T cells appear to face more extensive
changes with aging, B cells also experience progressive
changes during the aging process. In older adults, there
is a progressive decline in the overall number of B cells.
There is also a decline in the diversity of B cells with age

due to clonal expansion, like what is observed with the
loss of T cell diversity with age [51, 52]. However,
when looking at the percentage of naive B cells in the
older adults, there is a significant increase in the naive B
cell percentage within CD19+ cells, likely due to a steep
decline in certain memory B cell subsets. While the
percentage of IgM+ memory B cells appears to be main-
tained during the aging process, both IgG+ and IgA+ B
cells and plasmablasts (PB) experience steep declines in
number and percentage with age [53]. The decline in
memory B cells with age appears not only to be mainly
within the periphery but also to a lesser extent within the
bone marrow [54]. Although the declining function of T
cells may be partly to blame for the decline in switch
memory B cells with age, intrinsic defects within B cells
also play a role. One such intrinsic defect is the decline
in the expression of transcription factor E47 and the
enzyme activation-induced cytidine deaminase (AID)
within activated B cells isolated from older adults indi-
viduals [53]. As a transcription factor, E47 regulates
many B cell functions, including production of AID,
an enzyme that is essential for both isotype switching
and somatic hypermutation [55]. AID levels within B
cells correlate with IgG production, meaning that an
age-associated decline in the levels of AID likely plays
a role in the decline in switch memory B cells within the
older adults [55]. It has also been proposed that de-
creased levels of AID in B cells serves as a marker for
poor vaccine response within the older adults as the
decreased ability to class switch hampers the protective
humoral response to vaccination [56].

Implications for aging and SARS-CoV-2 infection

It has been observed in many coronavirus infections that
an early burst of type I IFN may lead to protection [57].
Unfortunately, a delay in type I IFN production is a
hallmark of “inflammaging” in the older adults and
could account for their increased susceptibility to
coronaviruses including SARS-CoV-2 and other respi-
ratory viral infections. Even removing “inflammaging”
from the picture, a delay in type I IFN with an increase
in IL-6 in SARS-CoV-2 infection causes decreased
ability to control viral replication resulting in respiratory
epithelia damage and cytokine storm [31]. Additionally,
other coronaviruses have multiple immune evasion
mechanisms that limit the induction of type I IFN early
in infection. Indeed, coronaviruses replicate in a double-
membrane structure derived from the endoplasmic
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reticulum of which there are no PRRs including the
important anti-viral TLR 3 and TLR7/8. SARS-CoV
can add methyl groups to its viral RNA, masking its
identity, thereby evading detection byMDA-5 and RIG-
I [58]. SARS-CoV and the NL63 non-epidemic strain
encode papain-like proteases that antagonize STING
and inhibit IRF3 translocation, preventing anti-viral re-
sponse [59]. Recently, it has been shown that ACE2 is
an interferon stimulating gene (ISG), suggesting that
SARS-CoV-2 can exploit ACE2 upregulation to en-
hance infection [60]. Additionally, several proteins pro-
duced by coronaviruses can interfere with other antiviral
pathways including NfKB and IFNAR signaling sup-
pressing IFN production [61]. It would not be amiss to
say, then, that SARS-CoV-2 might possess other similar
evasion mechanisms, which could exacerbate the defec-
tive progression from innate to adaptive immune re-
sponses in the older adults, leading to increased mor-
bidity and mortality. In contrast, individuals who sur-
vived were able to initiate early type I IFN production
and a complete progression to adaptive immunity with
strong neutralizing antibody, Th1 and Tfh response,
correlating with favorable outcomes [62–65] Further-
more, skewing of the older adults immune response
toward a Th2-dominant response may play an important
role in the increased risk of severe disease. Because of
this virus’ novelty, studies looking specifically at
SARS-CoV-2 are urgently needed evaluating immune
dysfunction and the viral pathogenesis in older adults,
especially for the context of vaccine production and
explanation for increased morbidity (Fig. 1).

Improving aging response to vaccines

Impaired responses to vaccination in older adults

Most vaccinations recommended for older adults are to
boost preexisting immunity from past infections and
vaccinations. These booster vaccines do reduce disease
burden at least somewhat, but infections like IAV are
still highly prevalent in the older population. The inci-
dence of this infection is indicative of ineffective recall
immunity responses. Multiple vaccine studies find that
older adults have significantly reduced IAV-specific
antibody responses that fail to seroconvert which would
be indicative of durable antibody titers and immune
protection [4, 66, 67]. In addition, the antibodies pro-
duced in older adults after IAV vaccination have a

decreased ability to neutralize virus along with restricted
repertoire diversity, fewer class-switched B cells and
PB, and inducible co-stimulation in influenza-specific
Tfh cells [67, 68]. Another group importantly evaluated
monocyte subsets in young and older individuals after
IAV vaccination. In response to the IAV vaccine, the
induction of IL-6 in both CD14+CD16− and
CD14+CD16+ monocytes from older adults was dimin-
ished. However, CD14+CD16+ inflammatory mono-
cytes were majorly induced in older adults at day 2
post-vaccination [69] pushing this response toward a
typical “inflammaging” profile.

It is also possible that the selection process during
affinity maturation may be altered in a tissue-specific
manner as selection of Ig genes in Peyer’s patch GCs
decreases with age while selection within the spleen
remains mostly unaltered [70]. This implies that the
effects on antibody production are dependent on the site
of induction and selection within older adults. These
features are indicative of an altered GC response in older
adults and will likely have major implications for vac-
cine design. Interestingly, one study has shown that the
memory B cell response to an IAV vaccine in the older
adults could be improved by repeated vaccination. This
vaccination strategy led to the maintenance of the fre-
quency of peripheral IAV-specific memory B cells and
PB in older adults, although IAV-specific IgG was still
lower than the levels seen in younger individuals [71].
The implications of this finding for vaccine design
especially against a viral pathogen might mean dimin-
ished protection against influenza challenge for the older
adults.

This impairment is true of even primary response
vaccines like the attenuated yellow fever (YF) vaccine.
Studies demonstrate that older adults generate antibod-
ies at a slower rate as compared with young adults
resulting in higher viremia 5 days post-vaccination and
decreased CD8+ T cell activation at day 10 post-
vaccination [125]. However, at 28 days post-vaccina-
tion, YF-specific antibodies were similar across the age
groups with controlled viremia. While this may suggest
that older adults have the potential to develop responses
like young adults, it was shown that the neutralizing
capability of the antibodies and polyfunctional effector
response of CD4+ and CD8+ T cells from older adults
were much lower [72]. Importantly, a polyfunctional
CD4+ T cell response has previously been implicated
in favorable clinical outcomes in patients [73, 74]. In
part, the decreased CD8+ T cell activation and
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proliferation following vaccination is thought to be due
to a decrease in the number of naive CD8+ T cells in
older adults prior to vaccination. These studies ultimate-
ly suggest that a decline in the function of CD8+ T cells
with age plays an important role in the increased sus-
ceptibility to severe viral infection and poor response to
vaccination that is observed in the older adults. This
increase in memory Treg frequency and function also
positively correlates with decreased seroconversion in
older adults following vaccination with an IAV vaccine
[75]. Taken together, there have been great strides in
understanding the mechanisms of immunological mem-
ory after vaccination and identification of the defects in

the aging immune system that can be targeted using
vaccine platforms. These insights will allow for an
improved vaccine strategy design that will improve
immune response in older adults.

Current vaccine strategies for SARS-CoV-2

The WHO, because of the urgent and overwhelming need
for a SARS-CoV-2 vaccine, accelerated the vaccine devel-
opment process by enabling accelerated production of
vaccines and diagnostics by streamlining the research
and development processes [76]. Acceleration of this pro-
cess has led to over 46 vaccine clinical trials currently

Fig. 1 Cell-specific changes of the innate and adaptive human
immune system associated with aging. The effects of aging in
various cell types are depicted. With aging, dysregulated innate
immune responses can result in failure to efficiently respond to
pathogens and vaccines. The production of PAMPs and DAMPs
that arise from chronic viral infections and cell damage contributes
to the elevated pro-inflammatory state, also known as
“inflammaging.” During inflammaging, increased basal levels of
pro-inflammatory cytokines are partially a result of dysregulated
PRR signaling including TLRs, RIG-I, cGAS-STING, and
inflammasome pathways. This increased basal activation in cell
types such as monocytes, macrophages, and dendritic cells re-
stricts sensitivity to new pathogens and responses to vaccines,
resulting in dysregulated innate immunity and failure to progress
to productive adaptive response. Changes in overall TLR protein
expression have been reported with other studies reporting on
specific cell subsets that expression levels remain the same, but

alterations in intracellular signaling proteins like PI3K and MAPK
levels decreased. The failure to progress to adaptive immunity
takes the form of the overall decline in T and B cells with a
reduction in TCR diversity and expansion and a progressive shift
to Th2 immunity. The levels of AID, important for class switch
recombination, are reduced in B cells, possibly contributing to the
poor memory B cell and antibody formation and a decreased
response to vaccination. PAMPs, pathogen-associated molecular
patterns; and DAMPs, damage-associated molecular patterns;
PRR, pattern recognition receptor; TLR, toll-like receptor; RIG-
I, retinoic acid-inducible gene I; cGAS-STING, cyclic GMP-AMP
Synthase; IFN, interferon; ROS, reactive oxygen species; TNF-α,
tumor necrosis factor-α; TCR, T cell receptor; PI3K,
phosphoinositide 3-kinase; MAPK, mitogen-activated protein ki-
nase; TCR, T cell receptor; Th2, T helper type 2 cell; AID,
activation-induced cytidine deaminase
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underway. Vaccine candidates for SARS-CoV-2 include
several platforms including live attenuated virus,
inactivated virus, viral vector, virus-like particles, subunit,
and nucleic acid vaccines (Fig. 2). Briefly, Symvivo Cor-
poration is leading an ongoing clinical trial and evaluating
the safety and immunogenicity of their bacTLR-spike
vaccine (NCT04334980). This vaccine platform is unique
in that a genetically modified probiotic will colonize the
gut and bind to intestinal epithelial cells where it will
deliver plasmids expressing the SARS-CoV-2 spike pro-
tein. This “living medicine” will sustain the expression of
the S protein for the life of the probiotic enabling continued
delivery and expression of the S plasmids. The Shenzhen
Geno-Immune Medical Institute have developed another
unique platform. While still in phase I, their platform
involves a genetically modified, artificial antigen present-
ing cell (aAPC) expressing SARS-COV- 2-specific anti-
gens that aims to generate large quantities of viral specific
T cells quickly (NCT04299724). Novavax has developed
NVX-CoV2373, a recombinant S protein vaccine made
with Novavax’s proprietary nanoparticle technology and
Matrix-M saponin-based adjuvant. This vaccine has en-
tered phase III (NCT04611802) with a specific focus
looking at the effect of the vaccine in at-risk adults.

AstraZeneca, in partnership with the University of
Oxford, has developed AZD1222, formally ChAdOx1.
This vaccine contains the genetic sequence of the
SARS-COV-2 S protein with a transgenic, non-
replicating chimpanzee adenovirus-based vector and
notably, along with Moderna and Pfizer, has become
one of the three frontrunners of the SARS-CoV-2 pan-
demic. The SARS-COV-2 vaccine trial has entered
phase III clinical trial (NCT04516746). Another non-
replicating recombinant adenovirus vector vaccine ex-
pressing full length S protein, created by CanSino Bio-
logics, is also in development (NCT04526990) and in a
phase III trial. The non-replicating feature of the
adenovector vaccine makes it relatively safe in individ-
uals with underlying diseases and children.

Interestingly, during this COVID-19 pandemic, it
became noticeable that countries who still include the
Bacillus Calmette-Guèrin (BCG) vaccine for Mycobac-
terium tuberculosis (Mtb) infection in their vaccination
regime had lower rates of infection than those that did
not [77]. Because of this, clinical trials began to deter-
mine whether the BCG vaccine prophylactically pro-
tects individuals against SARS-CoV-2 infection
through a process called trained immunity. Trained im-
munity, or innate immune memory, was conceived after

observations that immunological memory occurred in-
dependently of T and B cells. It is now thought that
monocytes, macrophages, DCs, and NK cells display
changes in their functional programs after infection or
vaccination, and these changes, probably epigenetic,
lead to an increased innate response [78]. BCG vacci-
nation through trained immunity may have non-specific
but beneficial effects, and these off-target effects are
already being harnessed to treat stage 0 bladder cancer
and prevent respiratory infections such as pneumonia
and IAV in children and older adults [79–81]. Since
SARS-CoV-2 may harness immune evasion mecha-
nisms similar to MERS including dampening of DC
activation [30] and type I and II IFN responses [61],
the inclusion of this concept in older adult vaccination
might help to bolster protection during the early phases
of infection. There are two clinical trials, in phases 3 and
4, underway to determine the effect of BCG vaccination
on SARS-CoV-2 infect ion (NCT04348370,
NCT04327206).

Nucleic acid vaccine strategies: tailor-made for the older
adult

Nucleic acid vaccines are an alternative platform that
may be able to overcome the disadvantages of vaccines
in the older adults and provide the benefit of rapidly
responding to emerging infections and the ability to add
immune targeting molecular adjuvants to their advan-
tage [82]. Nucleic acid vaccines can use plasmids
(DNA) or antigen-encoding mRNA, complexes with a
carrier that will be delivered into the cytoplasm of host
cells. This technique can help prime and cross-prime
APCs. This regimen has already resulted in improved
immunogenicity for Clostridium difficile and specific
avian IAV subtypes [83, 84]. Apart from the intrinsic
immunogenicity of plasmid DNA, the ability to co-
deliver a genetically encoded adjuvant perhaps raises
the DNA vaccine strategy above other platforms. In this
way, plasmids encoding transcription factors or other
molecules can elevate the activation state of a
transfected APC (see Molecular adjuvant section).
While there are no licensed DNA vaccines as of yet,
there are several vaccines in phase I clinical trials in-
cluding a SARS-CoV-2 vaccine from Inovio and the
Wistar Institute in healthy adults and the non-frail older
adults. Inovio’s DNA vaccine contains plasmids that
encode the SARS-CoV-2 S protein (NCT04336410).
Published data show that in guinea pig and mouse

37



GeroScience (2021) 43:31–51

studies, the vaccine induces neutralizing antibodies that
can block the S protein binding to the ACE2 receptor

and will re-distribute to the lungs where protection is
needed [85]. So far, these studies were done using

Fig. 2 Ongoing vaccine development platforms for SARS-CoV-2
(live attenuated, nucleic acid, viral vector, and protein vaccines. a
Candidate vaccines in clinical trial. mRNA-1273 created by
Moderna Inc./NIAID/CEPI is now in phase 3 (NCT04470427).
Each participant will receive 2 IM100ug doses 28 days apart or
placebo; BioNTech/Pfizer BNT162 is now in phase 3
(NCT04368728). Each participant will receive 2 IM mid dose
injections 21 days apart or placebo; INO-4800 by Inovio/Wistar
Institute is now in Phase 2/3 (NCT0464263). Each participant will
receive 2 ID injections (1 mg/dose) 28 days apart or placebo;
AZD1222 by AstraZeneca is now in phase 3 (NCT04516746).
Each participant will receive 2 IM injections (5e10 vp/dose)
4 weeks apart or placebo; LV-SMENP by Shenzhen Medical
Institute is now in phase 1 (NCT04276896). Each participant will
receive 5e6 LV-DCs (ID) +1e8 antigen-specific CTLs (IV)/dose.
Ad5-nCoV by CanSino Biologics is now in phase 3
(NCT04526990). Each participant will receive 1 IM injection or

placebo; NVX-CoV2373 by Novavax is now in phase 3
(NCT04611802). Each participant will receive 2 IM injections
(5 μg vaccine +50μg Matrix-M1 adjuvant/dose) 21 days apart or
placebo; bacTRL-Spike by Symvivo is now in phase 1
(NCT04334980). Each participant will receive either (1) a single
dose of bacTRL-Spike, equivalent to 1 billion colony forming
units (cfu) of B. longum; or (2) a single dose of bacTRL-Spike,
equivalent to 3 billion cfu of B. longum; or (3) a single dose of
bacTRL-Spike, equivalent to 10 billion cfu of B. longum. b
Preclinical vaccine candidates’ platforms (live attenuated virus,
inactivated virus, replicating/non-replicating viral vector, virus
like particles, subunit, and nucleic acid vaccine) *Vaccines are
the frontrunners in development as of 11/30/2020. ID, intrader-
mally; IM, intramuscular; EP, electroporation; VP, viral particles;
NIAID, National Institute of Allergy and Infectious Diseases;
CEPI, Coalition for Epidemic Preparedness Innovations
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younger animals, and the phase I clinical trial is focusing
on adults aged 18–50 years of age. The vaccine also
does not encode for any molecular adjuvants that could
help to initiate a more protective immune response from
those who are aged 65 years and older.

Over the past decade, mRNA vaccine development has
become a promising therapeutic tool. mRNA vaccines
have several benefits over different platforms like subunit,
live attenuated, killed, and even DNA vaccines. mRNA is
a non-infectious platform with no risk of integration. The
half-life of mRNA is shorter since it is normally degraded
by host nucleases and therefore regulated through specific
modifications and delivery methods. This is a benefit over
DNA vaccines which may carry the risk of anti-self-
nuclear or anti-self-DNA antibodies [86]. mRNA vaccines
can be more efficiently delivered in vivo with the use of
carrier molecules (i.e., nanoparticles), allowing for in-
creased uptake in the cytoplasm. To increase delivery
efficacy and to prevent degradation, different delivery
methods have been developed including various nanopar-
ticle formulae. Several different mRNA vaccines have
been in clinical trials including those for HIV
(NCT00672191), Zika (NCT03014089), and IAV
(NCT03076385 ) a s we l l a s SARS-CoV-2
(NCT04283461). Not only may this be a strategy for
increasing immune response in older adults, DNA vac-
cines are stable at room temperature and both DNA and
RNA vaccines are economical, making them easier to
develop during epidemics or pandemics.

Although DNA and mRNA vaccines have clear ben-
efits that may aid in overcoming the poor vaccine re-
sponse in the older adults, nucleic acid-based vaccines
also face their own set of shortcomings. Both DNA and
mRNA vaccines suffer from the difficulty in delivering
exogenous nucleic acids into mammalian host cells.
While the use of delivery devices like the gene gun
and electroporation are currently widely used to increase
in vivo transfection efficiency, these delivery devices
can prevent the ability to deliver DNA or mRNA vac-
cines to specific tissues, like mucosal tissues. Targeting
nucleic acid vaccines to certain cells types, like APCs, is
also important in optimizing the efficacy of these vac-
cines. This particular point is important as mRNA vac-
cines by themselves are poor stimulators of cell-
mediated immunity which is paramount for protection
against infection against viruses including IAV and
SARS-CoV-2 [87, 88].

Continued advances in the development of nanoparti-
cles for the delivery of both DNA and mRNA vaccines

have led to increased interest in their use to help overcome
the inherent shortcomings of nucleic acid vaccines.
Harnessing their ability to encapsulate and protect nucleic
acids from nucleases opens the possibility to administer
vaccines to tissues that were previously difficult to reach
such as the gut-associated lymphoid tissue (GALT) [89].
An additional benefit of using nanoparticles for vaccine
delivery is that high modularity of nanoparticles allow for
the addition of molecules, like mannose, that target DCs
for increased uptake and presentation of antigen [90],
penetration of mucosal barriers [91], or enhanced blood
retention time [92]. However, despite the benefits of
nanoparticle-based vaccine delivery, a major setback for
this delivery method is the poor transfection rate in vivo.
Despite this limitation, nanoparticles offer a unique deliv-
ery platform for vaccines that could be adapted for the
targeted development of vaccines for the older adults.
Important vaccines in clinical development using this de-
livery system include the recombinant trivalent nanoparti-
cle IAV vaccine (NanoFlu) in phase III clinical trial
(NCT04120194) and, notably, Moderna’s mRNA-1273
vaccine (NCT04283461) and Pfizer/BioNTech
(NCT04368728). Both Moderna and Pfizer’s vaccine uti-
lize a lipid nanoparticle delivery platform, but while
Moderna’s mRNA-1273 encodes a prefusion stabilized
form of SARS-CoV-2 S protein, Pfizer’s BNT162b1 en-
codes just the receptor binding domain (RBD).

Challenges and barriers to SARS-CoV-2 vaccine
strategies for older adults

Current SARS-CoV-2 vaccines face many challenges
when optimizing strategy for older adults. Vaccine plat-
forms that rely upon a normal progressive immune
response without consideration for immunosenescence
will potentially see a nonprotective vaccine for older
adults. In general, there are two concepts that pose as a
barrier to a productive SARS-CoV-2 vaccine in all
humans but more specifically older adults. First, it has
recently been shown that 35% of healthy adults who
have not been exposed to SARS-CoV2 exhibit
coronavirus-specific CD4+ T cells indicating cross-
reactivity in these cells between SARS-CoV-2 and other
coronaviruses [30]. Preexisting immunity can also pose
a problem for adenovirus-based vectors and remains a
potential caveat for that particular platform. Preexisting
immunity from natural infections, including
coronaviruses and adenoviruses, both responsible for
the common cold, can result in sustained neutralizing
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viral titers. Neutralizing antibodies can reduce the up-
take of the adenoviral vectors by APCs which can
impact the efficacy of the vaccine [93]. The use of viral
backbones like chimpanzee adenovirus vector (ChAd)
could circumvent this issue as humans have little to no
preexisting immunity [94] and by increasing the dose of
the vector. A second barrier to a safe and efficacious
SARS-CoV-2 vaccine is the occurrence of antibody-
dependent enhancement (ADE) of disease. ADE is clas-
sically associated with dengue virus where sub-
neutralization titers to one virus serotype can enhance
subsequent infection with another serotype via Fcγ
receptors in cells like macrophages or lead to enhanced
inflammation and immunopathology by excessive anti-
body Fc-mediated effector functions. Whether ADE can
occur in SARS-CoV-2 infection remains unclear as the
evidence currently remains circumstantial [95] but war-
rants further investigation to determine if antibodies can
increase disease severity. Lastly, nucleic acid vaccines
rely upon APCs to process and present vaccine antigen
for effective uptake. However, APCs including mono-
cytes, DCs, and macrophages have impaired immune
functional signaling that may negatively interfere with
this vaccine platform. The ability to target vaccines to
APCs or conjugate antigen and adjuvant together could
be used to overcome these barriers and increase the
efficacy of vaccines within the older adult population.

Adjuvants: who needs them?

Traditionally, adjuvants have been used to amplify the
adaptive immune response to a vaccine. The new con-
cept of adjuvant development has been increasingly
focused on not only amplifying the response but also
guiding the type of adaptive response that will produce
the most effective immunity specifically for each path-
ogen. The reason to integrate an adjuvant is twofold.
First, adjuvants increase the response to the vaccine in a
general population by increasing the number of individ-
uals that will be protected after immunization and facil-
itate the inclusion of smaller doses of antigen, allowing
for overall fewer doses of vaccine. Adjuvants are also
used to increase rates of protection in populations with
reduced reaction due to age, both young and old, or
immunocompromising disorders, as in the use of
MF89 adjuvant that is included in the IAV vaccine to
enhance the response of older individuals [96]. Second-
ly, adjuvants can qualitatively guide a tailored immune
response to specific pathogens. For example, adjuvants

have been used in preclinical and clinical studies to (1)
skew the type of immune response (CD4+ vs. CD8+,
Th1 vs. Th2); (2) increase speed of initial response [97];
(3) alter breadth or specificity of the response [97]; (4)
and increase generation of memory responses [98].

Molecular adjuvants

DNA or mRNA vaccines may offer an enhanced de-
livery platform that will be beneficial for older adult
individuals. Molecular adjuvants, those included as
plasmids in DNA or mRNA vaccines, can encode
transcription factors or other molecules like cytokines
and chemokines to increase stimulation and activation
of APCs, even enabling them to traffic to the mucosa
more effectively [99]. The upregulation of the tran-
scription factors, NFκB and IRF, are classical danger
signals that stimulate APCs. Shedlock and colleagues
have shown the co-delivery of DNA encoding HIV
proteins Gag and Env and NFκB via EP increased
cellular and humoral responses [100]. The co-
delivery of DNA encoding an IAV antigen with IRF3
(a transcription factor in many antiviral pathways)
increased the percentage of activated CD4+ and
CD8+ T cells [101]. Other groups have experimented
with the co-delivery of other IRFs. One group showed
that the co-delivery of HIV tat antigen with IRF1
enhanced the cytotoxic and Th1 response [102]. Luo
et al. utilized adaptor proteins in the RIG-I and TLR
pathways to induce IAV and malaria-specific CD8+ T
cell responses, respectively [103, 104]. Other ap-
proaches have used plasmids encoded with APC co-
stimulatory receptors such as CD80/CD86 or cyto-
kines and chemokines like IL-12 that promotes Th1
differentiation, APC stimulation, and trafficking to
mucosal sites for efficient antiviral responses [99,
105, 106]. Recently, adenosine deaminase-1 (ADA-
1), an enzyme that is normally responsible for deami-
nating adenosine to produce inosine, has been shown
to play a role in immune function by possibly creating
an immunological synapse between CD26, an ADA-1
receptor on CD4+ T cells, and other ADA-1 receptors
expressed on APCs. ADA-1 has also been reported to
enhance the ability of pre-Tfh to provide B cell help as
a plasmid in a HIV-1 DNA vaccine [98]. The use of
molecular adjuvants in DNA or mRNA vaccines re-
mains an important strategy to combat poor immuno-
genicity especially in the older adults.
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PRR-dependent adjuvants

Specific PRR stimulators, including TLR and RLR li-
gands, have been used as a strategy to boost immune
responsiveness to vaccination. PRR engagement has a
great potential to enhance immune protection in older
individuals. These adjuvants fall into two categories:
those that target antigen presentation cells (APCs) to
enhance their ability to stimulate the immune environ-
ment or those that target the adaptive immune system
like B and T cells. The targeted use of PRR adjuvants,
alone or in combination, will likely be essential in
vaccine development moving forward as each PRR
adjuvant has distinct effects for overcoming the deficits
in the innate and adaptive immune pathways of older
individuals such as helping to stimulate APCs by over-
coming lower activation of antiviral and antigen-
presentation pathways.

Synthetic dsRNA agonists have been used as adju-
vants and can signal through two different PRRs. Viral
or synthetic dsRNA can activate TLR3 in endosomes or
through the RIG-I pathway in the cytoplasm. TLR3 and
RIG-I agonism has been shown to activate DCs to
produce IL-12 and type I IFN, important antiviral cyto-
kines, with improved MHC class II expression and
cross-presentation [107]. There are several synthetic
dsRNA TLR3 adjuvants (Poly:IC, Poly ICLC, and Poly
IC12U) that have been used previously as adjuvants with
DC-targeting constructs, inactivated viral vaccine, solu-
ble proteins, and importantly, viral-like particles in aged
mice [108, 109]. Poly:IC can activate both TLR3 and
RIG-I pathways which can amplify the immune re-
sponse by inducing activation of DCs directly and the
production of type I IFNs through RIG-I [110]. RIG-I-
specific adjuvants are not as advanced and are still being
tested in animal models [111]. There are several candi-
dates that have been shown to protect against H5N1
IAV and Chikungunya with intravenous and intraperi-
toneal injections with JetPEI transfection reagent [112,
113]. An optimized Poly:IC or RIG-I adjuvant will
likely induce broad immune effects for an enhanced
adaptive immunity.

LPS is a potent adjuvant but cannot be used directly
in a vaccine because of the associated pyrogenic role.
There are several known TLR4 adjuvants already on the
market including monophosphoryl lipid A (MPL) and
MPL formulated with alum (AS04). MPL, best known
for being a component in the HBV (Fendrix) and HPV
(Cervarix) vaccines, has been proven to be safe and

effective [114]. MPL is recognized by TLR4 but, unlike
LPS, signals only through the TIR domain-containing
adaptor protein-inducing interferon β (TRIF) adaptor
protein, thereby avoiding the production of high levels
of inflammatory cytokines like TNF-α [115]. AS04
stimulates TLR4 that contributes to the activation and
maturation of APCs while repressing tolerance though
Treg activity. AS04 promotes IFNɤ production by anti-
gen specific CD4+ T cells skewing the immune response
to a Th1 profile. This is beneficial for protection against
intracellular pathogens. A recent human in vitro study
has found a novel TLR4 agonist called GLA-SE that
enhances mDC pro-inflammatory cytokine production
(TNF-α, IL-6, IL-12) and, when combined with a split-
virus vaccine and then challenged with IAV, showed a
protective Th1 response [116].

TLR7/8 is an endosomal PRR that recognizes ssRNA
from viruses and mediates the downstream effects
through the signaling adaptor protein MyD88. Since
ssRNA is rapidly degraded by host cell Rnases, several
synthesized compounds were developed as type I IFN
inducers. Compounds such as imidazoquinolines
(Imiquimod (TLR7) and resiquimod (TLR7/8)) and
guanosine/adenosine analogs can activate TLR7,
TLR8, or both [117]. The dual-agonists, those activating
both TLR7 and TLR8, may be the more effective ago-
nists as multiple subsets of monocytes and DCs as well
as neutrophils will be activated to induce antigen-pre-
sentation, antibody production, and Th1 skewed T cell
profile for viral and parasitic vaccines [118, 119]. Gao
et al. have developed an inert conjugate, unable to
activate the TLR7 pathway, that was shown to increase
the immunogenicity of weakly immunogenic antigens
both in vitro and in vivo [120]. TLR 7 has also been
used directly fused to proteins and conjugated to silica
nanoshells for an increased immunogenic response
[121].

TLR9 is an endosomal PRR that recognizes
unmethylated cytosine phosphate guanine (CpG) motifs
found in bacterial but not human DNA. TLR9 is
expressed in natural killer (NK) cells, B cells, and pDCs
but not in cDC1, cDC2, and monocytes [122–124].
TLR9 adjuvants, or synthetic oligodeoxynucleotides
(ODN) with CpG motifs (CpG-ODN), are perhaps the
most well studied of the TLR agonists because of their
complexity. All CpG motifs are recognized by TLR9
but have different quantitative effects on the immune
system [125]. CpG-ODN have been shown to enhance
antibody response and polarize T cells responses to a
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Th1 phenotype [126] including in aging models [127].
TLR9 agonists are being evaluated in the later stages of
clinical development for infectious disease. For exam-
ple, the current licensed hepatitis B virus (HBV) vac-
cine, Hepilsav-B, is very effective; however, about 5–
10% of individuals do not respond to vaccination even
after multiple doses. With the addition of CpG TLR9
adjuvant, the percentage of subjects with seroprotective
immune response increased, and the frequency of non-
responders decreased [128]. TLR9 adjuvants have also
been studied as formulations of nanoparticles [129],
virus-like particles [130], and adjuvants in a respiratory
syncytial virus (RSV) vaccine [131] and IAV [132].
Although TLR9 can exhibit species-specific differences,
the use of this TLR as an adjuvant should still be
explored [122].

The most recent innovations regarding adjuvants
have come in the form of cGAS-STING agonists. The
cGAS-STING response is unique among the PRR path-
ways. STING is an ER-resident transmembrane protein
that can act in two ways. The first is through IRF3/
NFκB signaling and the second is as a true sensor of
cyclic dinucleotides (CDNs) like those that are synthe-
sized by bacteria containing guanosine or adenosine
monophosphates (GMP, AMP). In response to dsDNA
(of viral, self, or mitochondrial origin), the host via
cyclic GMP-AMP synthase (cGAS) will synthesize a
CDN for a potent response. This pathway is crucial for
the innate immune system and mediates IFN production
to viral and bacterial infections [133, 134]. The initiation
of the cGAS-STING pathway mediates the activation of
APCs and, therefore, antigen-specific adaptive immuni-
ty [135]. Indeed, IgM production requires cGAS-
STING-dependent IFN production [136]. For this rea-
son, STING agonists with vaccine antigen have shown
to robustly increase immune protection through humoral
and cell-mediated responses against bacterial, parasitic,
and viral pathogens [137–140] as well as increase anti-
gen uptake by APCs [141]. However, aging and the
STING pathway, including how STING agonists can
alter the aged immune system, are far less understood
compared with other PRR agonists.

PRR-independent adjuvants

Due to the long history of use, aluminum-based adju-
vants have a strong record of safety and successful use
in licensed vaccines. More recent work looking at the
efficiency of an alum-adjuvanted H5N1 inactivated

vaccine in the older adults has even shown that
aluminum-based adjuvants can serve as effective adju-
vants in the older adults [142]. Because of its track
record, several groups are studying the efficacy of
alum-adjuvanted COVID-19 vaccines. In preclinical
work on the vaccines, which both use the RBD of the
S protein, the ability of the vaccines to generate high
titers of neutralizing antibodies in both mice and rhesus
macaques has been shown [143, 144]. However, while
aluminum-based adjuvants can serve as safe and effec-
tive adjuvants, previous studies have shown that
aluminum-based adjuvants are not always the most ef-
fective adjuvants for a given vaccine, further supporting
the need for advancing research on a variety of different
adjuvants in the ongoing development of a COVID-19
vaccine [145].

As the number of potential adjuvants beyond
aluminum-based adjuvants grew, various oil-in-water
emulsions were studied for their adjuvant properties.
One such adjuvant,MF59, is a well-established, safe
adjuvant that is currently used in an IAV vaccine spe-
cifically designed for older adults individuals (Fluad®,
Novartis) [146]. A number of preclinical trials have
shown that MF59 is a potent adjuvant in a range of
vaccines, such as recombinant proteins, viral membrane
antigens, peptides, and virus-like particles [147]. Sever-
al studies have also shown that MF59 is more potent
than alum in various vaccines in both mice and nonhu-
man primates [148]. MF59’s mechanism of action is
thought to work by increasing antigen uptake by APCs,
inducing APC migration, and enhancing local innate
immune cell activation at the injection site. Importantly,
several studies have determined that MF59 use in triva-
lent IAV vaccines is effective in preventing IAV-related
negative outcomes and hospitalizations with significant-
ly higher antibody titers in the older adults [146, 149].
Currently, Seqirus has pledged to provide MF59 for use
in the development of novel COVID-19 vaccines being
developed by others.

Another adjuvant being used in the development of
COVID-19 vaccines is the adjuvant system (AS) devel-
oped by GlaxoSmithKline (GSK). AS adjuvants are
combinations of immunostimulatory molecules that are
designed to create stronger and broader protection when
compared with single adjuvant alone [150]. Presently,
GSK has committed to using AS03 in its partnered
development of a COVID-19 vaccine [151]. AS03 is a
combination of a squalene-in-water emulsion and vita-
min E. Although the mechanism of action remains
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unclear, previous work has shown that AS03 is capable
of inducing strong antibody responses, and the use of
AS03 is thought to be best suited for vaccines where
antibody-mediated protection is important [150]. Pre-
clinical studies in ferrets have shown that an AS03-
adjuvanted H5N1 vaccine induced high antibody titers
with good longevity and cross-reactivity while also
allowing for antigen sparing [152–154]. Clinical trials
in healthy adults and older adults also showed that the
H5N1/AS03 vaccine provided a strong antibody re-
sponse while requiring a relatively low antigen dose
[155]. Additionally, during the 2009/2010 swine flu
pandemic, AS03 was used to rapidly develop an H1N1
vaccine [150]. Therefore, the prior experience in rapidly
developing vaccines using AS03 during a pandemic
along with its previous results in the older adults make
AS03 a promising adjuvant prospect for a COVID-19
vaccine that is effective in the older adults.

Another group of adjuvants that have shown promise
in older adults in other vaccines are the saponin-based
adjuvants. Saponins are plant-derived compounds that
have been studied for their use as adjuvants due to their
ability to enhance the innate immune response along
with humoral and cellular immunity [156]. While sapo-
nins have been studied for their independent adjuvant
properties, saponins have also been used to develop
adjuvant systems, like immune stimulating complexes
(ISCOMs). ISCOM adjuvant systems that are formed by
the mixing of cholesterol, phospholipids, and saponins
with a desired antigen [157]. One example of an ISCOM
is Matrix-M™, a saponin-based adjuvant used in
Novavax’s NanoFlu nanoparticle vaccine. As previous-
ly mentioned, NanoFlu is currently in a phase III clinical
trial testing its efficacy in older adults. NanoFlu has also
been granted the fast track designation by the FDA
(NCT04120194). Toward the development of a
COVID-19 vaccine, Novavax currently has a vaccine
using the same nanoparticle-based platform and Matrix-
M™ along with the S protein in phase I/II clinical trial
[158]. Additionally, the National Institute of Allergy
and Infectious Disease (NIAID) has also awarded sup-
plemental contract funding to Adjuvance to develop its
QS-21-analogue adjuvant TQL1055, a saponin-based
adjuvant, for use in a COVID-19 vaccine using the
National Institutes of Health’s (NIH) SARS-COV-2
antigen [159]. While the current vaccine studies using
saponin-based adjuvants in COVID-19 vaccine devel-
opment have not explicitly focused on protection in the
older adults, previous saponin-based adjuvants, like

GSK’s AS01 adjuvant, have shown promise for eliciting
protective immune responses in the older adults. In fact,
the now-licensed varicella-zoster-virus vaccine that uses
AS01 shows 97% protection in those aged 50–70 years
and over 90% in those aged 80+, suggesting that
saponin-based adjuvants can induce strong immunity
in the older adults [160].

The more the merrier

The activation of more than one receptor could be more
effective than the activation of a single pathway. Studies
performed in vitro and in vivo have shown that the
activation of more than one receptor enhances DC and
NK response, induces a Th1 response, and stimulates
cross-protective humoral protection with an IAV vac-
cine [161, 162]. Effective adjuvants that are currently
licensed by GSK take this approach like AS01B and
AS04 (MPL and alum). AS01B, a liposome-based vac-
cine adjuvant system, contains two immunostimulants:
MPL and the saponin QS-21. AS01B is efficient in
promoting cellular immune response [163] by activating
APCs and inducing migration and activation of other
innate cells like monocytes [3]. AS01B is included in the
Shringrix vaccine for persons aged 50 years or older.
One study presents a novel viral vaccine adjuvant that
contains two synthetic ligands for TLR4 and TLR7.
Separately, the adjuvants induce different responses
(Th1 vs. Th2) but together, along with a recombinant
antigen from IAV, a robust and rapid humoral immunity
that protected against lethal challenge was observed
[161]. As combination adjuvant systems can be a pow-
erful tool in vaccine development, future studies should
focus on determining the variation on adjuvant efficacy
due to age. It has been reported that combination adju-
vants can vary with age (newborn vs. older adults), so
phase III efficacy trials should make sure to include both
at-risk age groups [164].

Conclusions and outlook

Despite the urgency in developing vaccines against
members of the coronavirus family, there are relatively
few successful vaccines that have been in development
for SARS-CoV or Middle Eastern Respiratory Syn-
drome (MERS)-CoV. Like SARS-CoV-2, the S protein
of SARS-CoV andMERS-CoV is the principal antigen-
ic component that induces antibodies to block viral entry
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and stimulates immune responses from the host and so
has been the target of the vaccine development efforts.
Vaccine studies for SARS-CoV-1 began using the full-
length S protein and were tested in animal models (mice,
ferrets, non-human primates (NHP)). However, the out-
comes of these vaccines included harmful immune re-
sponses resulting in liver damage and enhanced infec-
tion after viral challenge [165]. No human clinical stud-
ies were done, and the vaccine effort against SARS-
CoV diminished when the virus subsided [166, 167].
Likewise, there are currently no clinically approved
MERS-CoV vaccines. Multiple vaccines in the pipeline
have been developed against the S protein, but several
vaccines, unlike SARS-CoV-1, target specific regions
within the S protein like the RBD and so have not shown
the same harmful effects.

Despite this improvement, few of these vaccines in
clinical trials have addressed the concerns in vaccine de-
velopment for those who are older adults. SARS-CoV-1,
MERS-CoV, and the current SARS-CoV-2 all have the
biggest case fatality rate in the ages 65 years and above, yet
very few groups design vaccineswith this inmind [168]. A
limited number of trials include those over 65 years old in
earlier phases to determine if protective immune responses
can be elicited. For example. Novavax’s protein subunit
vaccine has progressed to phase III with no published
results, but, as previously mentioned above, the same
company has completed a phase III clinical trial with this
platform against IAV (NanoFlu, NCT04120194). In adults
65 years and older, NanoFlu was shown to be well toler-
ated and achieved significantly higher geometric mean
titers (GMT) and seroconversion rates when compared
with Fluzone Quadrivalent vaccine. It may come as no
surprise that the three frontrunners include two mRNA
vaccines from Moderna and Pfizer, and an adenoviral
vector vaccine from AstraZeneca. Phases I and II of
Moderna’s clinical trial included those aged 18–99 years
of age; however, as of this review’s publication, no data
have been released from the experimental arms that looked
at ages 70 years and above, although they have now
moved into phase III. Phase I trial has concluded that this
vaccine is safe and well tolerated [169], and interim results
from phase III were just released stating that the vaccine
safe and effective at preventing symptomatic COVID-19
in adults [170]. A third nanoparticle vaccine, being devel-
oped by Pfizer and BioNTech, looks at three age groups:
18–55, 65–85, and 18–85 years. It was recently announced
that Pfizer’s vaccine is also safe and well tolerated and
met all primary efficacy endpoints [171] but with no

published or released results regarding their older adult
study trial arm. With these promising clinical trial results,
it is important to reflect on certain aspects of what each
study has focused on measuring for their primary out-
comes. Each frontrunner vaccine has said that they have
met their primary outcomes, includingwhether the vaccine
elicits protection. However, it remains to be seen whether
the vaccines can elicit sterilizing immunity or just rather
protect against symptoms in the infected individual. In the
end, it will be of great interest to know the results of each
clinical trial at the higher end of the age spectrum consid-
ering the dire consequences of a vaccine that cannot protect
those that need it most.

The SARS-CoV-2 pandemic has galvanized many
efforts to protect the population from further infection
and to attenuate the disease of those currently infected.
Viral entry inhibitors like Remdesivir are getting their
time in the spotlight with RNA replication inhibitors
following closely behind. With the recent Remdesivir
clinical trial ending early due to overwhelming positive
evidence, it seems we have finally been able to turn the
page with an effective treatment against SARS-CoV-2
(NCT04280705). While so far we have three candidates
that have emerged as frontrunners, it still must be stated
that any final approach must include strategies that are
tailored to the aging immune system for the most at-risk
population in this pandemic. Most of the current
COVID-19 vaccine strategies rely upon parenteral vac-
cine administration. While a mucosal site vaccine strat-
egy would be complicated, using a mucosal targeting
adjuvant with a nanoparticle vaccine platform might be
extremely effective especially in the at-risk older adult
population. Moving forward, a better knowledge of the
specific deficits in key immunological and antiviral
pathways cannot be understated. Strategies for vaccinat-
ing younger individuals cannot be simply translated to
older populations and can, in fact, be harmful [172].
Studies into immunological aging provide a great op-
portunity to understand how these challenges may be
overcome and successful vaccination tactics developed.
Until more clinical and basic science studies are com-
pleted, including studies focusing on long-term immu-
nity from vaccines and host immune response against
SARS-CoV-2, vaccine development will continue in
hopes of global mass immunization.
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