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Prioritising COVID-19 vaccination in changing social and 
epidemiological landscapes: a mathematical modelling study
Peter C Jentsch, Madhur Anand, Chris T Bauch

Summary
Background During the COVID-19 pandemic, authorities must decide which groups to prioritise for vaccination in a 
shifting social–epidemiological landscape in which the success of large-scale non-pharmaceutical interventions 
requires broad social acceptance. We aimed to compare projected COVID-19 mortality under four different strategies 
for the prioritisation of SARS-CoV-2 vaccines.

Methods We developed a coupled social–epidemiological model of SARS-CoV-2 transmission in which social and 
epidemiological dynamics interact with one another. We modelled how population adherence to non-pharmaceutical 
interventions responds to case incidence. In the model, schools and workplaces are also closed and reopened on the 
basis of reported cases. The model was parameterised with data on COVID-19 cases and mortality, SARS-CoV-2 
seroprevalence, population mobility, and demography from Ontario, Canada (population 14·5 million). Disease 
progression parameters came from the SARS-CoV-2 epidemiological literature. We assumed a vaccine with 
75% efficacy against disease and transmissibility. We compared vaccinating those aged 60 years and older first (oldest-
first strategy), vaccinating those younger than 20 years first (youngest-first strategy), vaccinating uniformly by age 
(uniform strategy), and a novel contact-based strategy. The latter three strategies interrupt transmission, whereas the 
first targets a vulnerable group to reduce disease. Vaccination rates ranged from 0·5% to 5% of the population per 
week, beginning on either Jan 1 or Sept 1, 2021.

Findings Case notifications, non-pharmaceutical intervention adherence, and lockdown undergo successive waves 
that interact with the timing of the vaccine programme to determine the relative effectiveness of the four strategies. 
Transmission-interrupting strategies become relatively more effective with time as herd immunity builds. The model 
predicts that, in the absence of vaccination, 72 000 deaths (95% credible interval 40 000–122 000) would occur in 
Ontario from Jan 1, 2021, to March 14, 2025, and at a vaccination rate of 1·5% of the population per week, the oldest-
first strategy would reduce COVID-19 mortality by 90·8% on average (followed by 89·5% in the uniform, 88·9% in 
the contact-based, and 88·2% in the youngest-first strategies). 60 000 deaths (31 000–108 000) would occur from 
Sept 1, 2021, to March 14, 2025, in the absence of vaccination, and the contact-based strategy would reduce COVID-19 
mortality by 92·6% on average (followed by 92·1% in the uniform, 91·0% in the oldest-first, and 88·3% in the 
youngest-first strategies) at a vaccination rate of 1·5% of the population per week.

Interpretation The most effective vaccination strategy for reducing mortality due to COVID-19 depends on the time 
course of the pandemic in the population. For later vaccination start dates, use of SARS-CoV-2 vaccines to interrupt 
transmission might prevent more deaths than prioritising vulnerable age groups.
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Introduction
The COVID-19 pandemic has imposed a massive global 
health burden as waves of SARS-CoV-2 infection move 
through populations around the world.1 Empirical 
analyses and mathematical models have shown that 
non-pharmaceutical interventions—such as physical 
distancing, handwashing, and mask wearing—are 
effective in reducing the COVID-19 case incidence.2–4 
However, pharmaceutical interventions are highly 
desirable given the socioeconomic costs of lockdowns 
and physical distancing. Dozens of vaccines are in 
development,5 and model-based analyses are exploring 
the question of which groups should get COVID-19 
vaccines first.6–8

When vaccines become widely available, we will face a 
very different epidemiological landscape from the early 
pandemic.9 Many populations will already have had 
one or more waves of COVID-19. As a result of natural 
immunity, the effective reproduction number Reff (the 
average number of secondary infections produced per 
infected person) will be reduced from its original value of 
R₀≈2⋅2 in the absence of pre-existing immunity.10 
Epidemiological theory tells us that as Reff (or R₀) declines 
towards 1, the indirect benefits of vaccines that reduce 
transmission become stronger. For instance, if R₀≈1⋅5, 
such as for seasonal influenza, only an estimated 33% of 
the population needs immunity for transmission to die 
out in a homogeneously mixing population.11,12 This effect 
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was evidenced by the strong suppression of influenza 
incidence in Australia in the spring of 2020 due to 
non-pharmaceutical interventions targeted against 
COVID-19.13

This effect has stimulated a literature comparing the 
vaccination of groups that are responsible for most 
transmission with the vaccination of groups that are 
most susceptible to serious disease as a result of 
infection. Natural immunity to SARS-CoV-2 is likely to 
continue to rise in many populations on account of 
further infection waves. Given these likely changes to the 
epidemiological landscape before the vaccine becomes 
available, we suggest the question of which groups to 
prioritise for vaccination is worthy of investigation in the 
context of COVID-19.

The social landscape will also look very different when 
vaccines become available. This aspect is crucial to 
understanding the pandemic. Scalable non-pharma
ceutical interventions are often one of the few available 
interventions when a novel pathogen emerges. Flattening 
the COVID-19 epidemic curve was possible through a 
sufficient response by populations willing to adhere to 
public health recommendations. Therefore, pandemic 
waves are not simply imposed on populations—they are 
a creation of the population response to the pathogen. 
They exemplify coupled social–epidemiological systems 
in which disease dynamics and behavioural dynamics 
interact with one another.14

Approaches to modelling coupled social–epidemiological 
dynamics vary.15–19 Some models have used evolutionary 
game theory to model this two-way feedback in a variety of 
coupled human–environment systems.14,20–25 Evolutionary 
game theory captures how individuals learn social 
behaviours from others while weighing risks and benefits 
of different choices. In this framework, individuals who 

do not adopt non-pharmaceutical interventions can 
free-ride on the benefits of reduced transmission 
generated by individuals who do adopt non-pharmaceutical 
interventions.15

In this study, our objective was to compare projected 
COVID-19 mortality under four strategies for the 
prioritisation of COVID-19 vaccines: older individuals 
first, children first, uniform allocation, and a novel 
strategy based on the contact structure of the population. 
We use an age-structured model of SARS-CoV-2 trans
mission, including evolutionary game theory, to model 
population adherence to non-pharmaceutical inter
ventions and changes to mobility patterns. We use 
scenario and sensitivity analyses to identify how strategy 
effectiveness responds to possible changes in the social–
epidemiological landscape that could occur before and 
after vaccines become available.

Methods
Model structure and parameterisation
We developed an age-structured SEPAIR (susceptible, 
exposed, presymptomatic, asymptomatic, symptomatic, 
removed) model with ages in 5-year increments. Upon 
infection, individuals enter a latent period in which they 
are infected but not yet infectious (exposed). After the 
latent period, individuals become presymptomatically 
infectious, and then either symptomatically or asympto
matically infectious, before finally entering the removed 
compartment when their infectiousness ends. We did 
not explicitly model testing or contact tracing, although 
we assume infected individuals are ascertained at some 
rate. Transmission occurs through an age-specific 
contact matrix, susceptibility to infection is age-specific, 
and we include seasonality because of changes in contact 
patterns throughout the year.

Research in context

Evidence before this study
Whether to vaccinate individuals who cause the most 
transmission or those who are at highest risk of death is 
relevant to prioritising COVID-19 vaccination. We searched 
PubMed and medRxiv using the terms COVID-19, vaccin*, 
model, and priorit* up to Sept 24, 2020, with no date or 
language restrictions. We identified four preprints on 
mathematical models of COVID-19 vaccine prioritisation that 
explored the conditions under which different age groups 
should be vaccinated first. We did not find any coupled 
social–epidemiological models that captured feedback 
between social dynamics and epidemic trajectories.

Added value of this study
The dynamic interaction between SARS-CoV-2 epidemics and 
the population response through scalable non-
pharmaceutical interventions will continue to have a large 
role in the course of the pandemic, both before and after 
vaccines become available. Therefore, social–epidemiological 

models can be useful. Our social–epidemiological model 
identifies the conditions under which we can prevent more 
COVID-19 deaths by prioritising older individuals first versus 
other strategies designed to interrupt transmission. In this 
study, we explored how the best vaccination strategy depends 
on a wide range of social–epidemiological and vaccine 
programme parameters. We identified clear and interpretable 
conditions that determine how well COVID-19 vaccines can 
interrupt transmission and reduce mortality.

Implications of all the available evidence
Antibody seroprevalence surveys before the onset of 
vaccination could ascertain a population’s level of pre-
existing SARS-CoV-2 immunity. In populations where 
seropositivity is high due to previous pandemic waves, 
population-specific models can help vaccine prioritisation 
decisions by determining whether vaccinating to interrupt 
transmission might prevent more deaths than prioritising 
individuals older than 60 years.
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Statistical analysis
To infer model parameters, we used a Bayesian particle 
filtering approach to fit the model to Ontario COVID-19 
case notifications (stratified by age and time), Ontario 
seroprevalence data, and Ontario mobility data. Using 
seroprevalence data ensured that our estimates of 
transmission were not biased by case under-reporting. 
Remaining model parameter values were fixed with 
use of Ontario demographic and mortality data, and 
literature on COVID-19 serial interval and incubation 
periods. Details of our model structure, parameterisation, 
data sources, and model fits are provided in 
the appendix (pp 1–11). The posterior distributions 
for predicted case notifications and adherence to 
non-pharmaceutical interventions are compared with the 
corresponding empirical data in figure 1.

Non-pharmaceutical intervention scenarios
In our scenarios, both schools and workplaces are closed 
when the number of ascertained active cases surpasses 
50%, 100%, 150%, 200%, or 250% of the peak ascer
tained active cases that occurred during the first wave 
(the shutdown threshold), and are reopened again when 
cases fall below that threshold. We use social learning 

dynamics derived from evolutionary game theory to 
model individual adherence to non-pharmaceutical 
interventions.14,20–22 Individuals interact with other 
individuals at a specified rate and switch between 
adherence and non-adherence to non-pharmaceutical 
interventions, including mobility restrictions, by com
paring the cost of practicing non-pharmaceutical 
interventions against the cost of not practicing non-
pharmaceutical interventions, and thereby being subject 
to an increased risk of infection according to the 
prevalence of ascertained cases. Both school and work
place closure and population adherence to non-
pharmaceutical interventions reduce transmission 
according to a specified efficacy (appendix pp 1–5).

Vaccine scenarios
We considered two dates for the onset of vaccination: 
Jan 1 and Sept 1, 2021. These dates correspond to the end 
dates of a two-dose course of vaccination lasting 2 weeks. 
We assumed it was possible to vaccinate 0·5%, 
1·0%, 1·5%, 2·5%, or 5·0% of the population per week 
(the vaccination rate). Our baseline scenario assumed a 
vaccine with 75% efficacy, in all ages, against both disease 
and transmissibility.

See Online for appendix

Figure 1: COVID-19 case numbers and proxy for adherence to non-pharmaceutical interventions
(A) COVID-19 case incidence by date of report in Ontario. Dots show the 7-day running average of case notification data, and the line represents the ascertained case 
incidence from best fitting models (with 95% credible intervals represented by the shaded region). (B) Each dot represents the proportional reduction in time spent 
at retail and recreation destinations and workplaces on the given date, compared with the 5-week average on corresponding days of the week 1 year ago, according 
to Google mobility data. Lines show the proportion of the population adhering to non-pharmaceutical interventions (with 95% credible intervals represented by the 
shaded region) as well as workplace and school shutdown curves from the fitted model. Methods and data sources are provided in the appendix (pp 1–11).
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In the oldest-first strategy, the vaccine is administered 
to individuals aged 60 years or older first. After all 
individuals in this group are vaccinated, the vaccine is 
administered uniformly to individuals of other ages. 
The youngest-first strategy is similar, except that the 

vaccine is administered to individuals younger than 
20 years of age first. In the uniform strategy, the vaccine 
is administered to all age groups uniformly from the very 
start. The contact-based strategy allocates vaccines 
according to the relative role played by different age 

Figure 2: Effect of interaction of social and epidemiological dynamics on pandemic waves and vaccine strategy effectiveness over time
(A) Number of ascertained incident COVID-19 cases. (B) Proportion of the population practising non-pharmaceutical interventions. (C) Level of school and 
workplace closure (note that curves for different vaccination strategies overlap). (D) Number of individuals with natural or vaccine-derived immunity. 
Predictions are based on the Ontario population size (14·6 million), with vaccination beginning on Jan 1, 2021 (as indicated by the dashed vertical line in the 
graphs), shutdown occurring at 200% of peak cases in the first wave, and a vaccination rate of 0·5% of the population per week. Other parameter values are 
provided in the appendix (pp 1–11).
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Figure 3: Incident cases by vaccination strategy across three model regimes
Projections of ascertained incident COVID-19 cases if vaccination begins in January (A, B) or September (C, D), and if the rate of vaccination is 1·5% (A, C) or 0·5% 
(B, D) of the population per week. These scenarios represent three main model regimes: timely vaccination (A), partial vaccination and indirect protection (B, C), 
and slow and late vaccination (D). Projections are based on the Ontario population size of 14·6 million and shutdown occurring at 200% of peak cases in the first 
wave. Other parameter values are provided in the appendix (pp 1–11).
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groups in transmission. This strategy tends to prioritise 
ages 15–19 year first, 20–59 year second, and gives least 
priority to older or younger ages (appendix pp 4, 12). The 
oldest-first strategy targets a vulnerable age group, while 
the other three strategies are designed to interrupt 
transmission. We also report on sensitivity analyses that 
explore the effects of vaccine efficacy assumptions and a 
higher R0, ascertainment rate, or social learning rate, and 
that incorporate dynamics of vaccinating behaviour.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
The model reproduces two or more pandemic waves 
from March, 2020, onward, not only with respect to 
COVID-19 cases but also population adherence to 
non-pharmaceutical interventions and periods of school 
and workplace closure (figure 2; appendix pp 14–15).

The effects of the four vaccination strategies on 
COVID-19 cases and COVID-19-related deaths depends 
on when the vaccine becomes available and how quickly 
the population can be vaccinated. For most parameter 
values governing the vaccination rate and shutdown 
threshold, vaccinating people aged 60 years or older first 
prevents the most deaths out of all four strategies if 
vaccination begins on Jan 1, 2021, although the uniform 
or contact-based strategies prevent the most deaths if 
vaccination begins on Sept 1, 2021, and the vaccination 
rate ranges from 1% to 2·5% of the population per week. 
The model predicts that 72 000 deaths (95% credible 
interval 40 000–122 000)would occur in Ontario from Jan 
1, 2021, to March 14, 2025, in the absence of vaccination, 
and the oldest-first strategy would reduce COVID-19 
mortality by 90·8% on average (followed by 89·5% in the 
uniform, 88·9% in the contact-based, and 88·2% in the 
youngest-first strategies) at a vaccination rate of 1·5% of 
the population per week. 60 000 deaths (31 000–108 000) 
would occur from Sept 1, 2021, to March 14, 2025, in the 
absence of vaccination, and the contact-based strategy 
would reduce COVID-19 mortality by 92·6% on average 
(followed by 92·1% in the uniform, 91·0% in the oldest-
first, and 88·3% in the youngest-first strategies), at 
vaccination rate of 1·5% per week.

Figure 4: Effects of vaccination strategy and start date on percentage reduction in mortality
Violin plots of the percentage reduction in mortality under the four vaccine strategies, relative to no vaccination, 
as a function of the vaccination rate, for vaccination beginning on Jan 1, 2021 (A), and Sept 1, 2021 (B). Horizontal 
lines represent the median values and 95% credible intervals of posterior model projections. Projections are based 
on the Ontario population size of 14·6 million and shutdown occurring at 200% of peak cases in the first wave. 
Other parameter values are provided in the appendix (pp 1–11). The projected number of deaths in the 
absence of vaccination was 72 000 (95% credible interval 40 000–122 000) from Jan 1, 2021, to 
March 14, 2025, and 60 000 (31 000–108 000) from Sept 1, 2021, to March 14, 2025.

Figure 5: Best strategies for preventing deaths according to shutdown 
threshold and vaccination rate for vaccinations beginning in January (A) 
and September (B), 2021
Each parameter combination on the plane is colour coded according to which 
of the four strategies prevented the most deaths, on average, across all model 
realisations. Shutdown threshold is the number of active cases as a percentage 
of peak cases in the first wave. Other parameter values are provided in the 
appendix (pp 1–11).
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We identified three regimes for model dynamics, and 
explored them through plots of infection incidence over 
time, percentage reduction in mortality under all four 
strategies (as they depend on the vaccination rate and 
shutdown threshold), and number of deaths prevented 
(as a function of the shutdown threshold and the 
vaccination rate).

In the first regime, vaccination starts on Jan 1, 2021, 
and the vaccination rate is relatively high (≥1·0% of the 
population per week). A third wave in the autumn 
of 2021 or winter of 2022 is thereby prevented (figure 3A; 
appendix p 13). In this regime, enough people are 
vaccinated sufficiently far in advance to prevent a third 
wave, but the oldest-first strategy prevents more deaths 
than the other strategies (figures 4A, 5A).

In the second regime, either vaccination starts early 
(Jan 1, 2021) but the vaccination rate is low (≤0·5% of the 
population per week; figures 2, 3B, 4A), or vaccination 
starts late (Sept 1, 2021) but the vaccination rate is 
high (≥1·5% of the population per week; figures 3C, 4B; 
appendix p 14). In this intermediate scenario, a sufficient 
proportion of the population is vaccinated for indirect 
protection from the vaccine to become important during 
the third wave, but not enough individuals are vaccinated 

to completely prevent it. As a result, the uniform and 
contact-based strategies are more effective than the 
oldest-first strategy, but the youngest-first strategy does 
worst of all (figures 2B, 2C, 4, 5). However, as the 
vaccination rate becomes very high, the effectiveness of 
all four strategies converges because the entire population 
is vaccinated quickly (figure 4B).

In the third regime, vaccination starts late (Sept 1, 2021) 
and the vaccination rate is relatively low (≤1·0% of the 
population per week; figure 3D; appendix p 15). This 
scenario does not allow enough time for indirect 
protection from vaccination to become strong. As a 
result, the oldest-first strategy prevents more deaths 
than the other three strategies (figures 4B, 5B). Overall 
mortality is higher for all strategies compared with the 
other two regimes on account of the delayed rollout of 
the vaccine. The relative performance of the strategies 
in these three regimes is generally unchanged across 
the full range of values for the shutdown threshold 
(appendix pp 16–17).

Frequency histograms across all stochastic model 
realisations showing what percentage of the population 
has natural immunity at the start of a vaccine programme, 
when a particular strategy was shown to work best, 

Figure 6: Effect of pre-existing natural immunity on the effectiveness of transmission-interrupting strategies
Frequency histogram of the proportion of the population with natural immunity for each strategy, taken from simulations where that strategy reduced mortality 
most effectively, for oldest-first (A), youngest-first (B), uniform (C), and contact-based strategies (D). The most effective strategy is defined as the one that reduced 
mortality the most across the largest number of model realisations. Vertical dashed lines denote median values of the distribution. Other parameter values are 
provided in the appendix (pp 1–11).
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illustrate the role of indirect protection (figure 6). In 
simulations in which the oldest-first strategy did best, the 
percentage of the population with natural immunity 
tends to be relatively low. This finding is expected because 
indirect protection from vaccines is weaker when few 
people have natural immunity upon which vaccine 
indirect protection can build. However, when the uniform 
or contact-based strategy does best, more simulations 
exhibit a high level of natural immunity at the start of 
vaccination. We note that the variance in these histograms 
is high, which underscores the role of other factors in 
the model, such as timing and interaction between social 
and epidemiological dynamics. Similarly, if we plot 
the percentage reduction in mortality for hypothetical 
vaccination start dates ranging from Sept 1, 2020, to 
Sept 1, 2021, the transmission-interrupting strategies 
become relatively more effective than the oldest-first 
strategy for later vaccination start dates, because herd 
immunity has time to increase before the start of the 
vaccine programme (appendix p 18).

We also studied how the best strategy changes depending 
on vaccine efficacy (ranging from 40% to 90%) in people 
aged 60 years and older and people younger than 60 years 
(appendix p 19). For January vaccine availability, the oldest-
first strategy is best, even when vaccine efficacy is lower in 
those aged 60 years and older than in those younger than 
60 years. For September vaccine availability, the uniform 
or contact-based strategies do best, except when vaccine 
efficacy in those aged 60 years or older is at least 5% higher 
than vaccine efficacy in those younger than 60 years.

We modelled the dynamics of vaccinating behaviour 
after vaccines become available (appendix pp 4, 20–23). 
Because of a lack of empirical data, we explored a wide 
range for the social learning rate and the perceived relative 
cost of vaccination versus infection. The results suggest 
that a sufficiently high perceived cost of vaccination allows 
the uniform or contact-based strategies to outperform 
the oldest-first strategy, especially for January vaccine 
availability, except when the vaccine social learning rate is 
also high (appendix pp 20). Vaccine refusal increases as 
the vaccine cost rises (appendix pp 21–23). Because 
vaccine refusal in the targeted age group forces vaccination 
of other age groups instead, it makes all strategies behave 
more like the uniform strategy, although age-specific 
behaviours could change these predictions.

We ran simulations with R0=2·5 for December, 2020, 
onward and found that the oldest-first strategy was more 
effective more effective than the other three strategies 
across a broader region of parameter space for September 
availability, particularly at higher vaccination rates 
(appendix pp 24). This finding is expected because 
indirect protection is less effective when R₀ is higher. 
We also ran simulations with 30% higher and lower 
ascertainment for December, 2020, onward to capture 
potential changes to COVID-19 testing and found that it 
had little effect on which strategy was most effective 
(appendix pp 25–26). Similarly, higher or lower social 

learning rates for non-pharmaceutical interventions had 
little effect on the predictions (appendix pp 27–28).

We also analysed a scenario in which the vaccine efficacy 
against disease can be greater than the vaccine efficacy 
against infectivity. We found that increasing the 
efficacy against disease up to 95%, while holding the 
efficacy against infectivity constant at 75%, led to a slight 
improvement in the effectiveness of all four strategies, 
especially for the oldest-first and uniform strategies 
(appendix p 29). We generated results for our baseline 
scenario, but using a more stringent acceptance 
threshold for our Bayesian particle filtering algorithm, 
and found that our results were qualitatively unchanged 
(appendix p 30). Finally, in a special case of the model in 
which social dynamics are held fixed, the model fit to the 
epidemic curve worsens and the region of parameter 
space where the contact-based or uniform strategies are 
most effective expands (appendix pp 31–32)

Discussion
Our social–epidemiological model suggests that if 
a vaccine against SARS-CoV-2 becomes available 
sufficiently late in the pandemic, use of such vaccines to 
interrupt transmission might prevent more deaths from 
COVID-19 than use of the vaccines to target those aged 
60 years and older, depending on when the vaccine 
becomes available and how quickly the population can be 
vaccinated. These results are driven by the fact that the 
vaccine might only become available after populations 
have had one or more waves of immunising infections. 
As a result, the effective reproduction number, Reff, could 
be significantly closer to 1 than the basic reproduction 
number R₀≈2⋅2 that applies to susceptible populations. 
In this regime, vaccines that reduce transmission have 
disproportionately large indirect protective effects.11

The Google mobility data that we used as a proxy for 
adherence to non-pharmaceutical interventions closely 
mirror the COVID-19 case notification data over the 
period used for fitting (figure 1). A heightened perception 
of COVID-19 infection risk stimulates the adoption 
of non-pharmaceutical interventions,26 which in turn 
reduces SARS-CoV-2 transmission,2,3 exemplifying a 
coupled social–epidemiological dynamic. This mirroring 
might represent convergence between social and epide
miological dynamics, which has been predicted for 
strongly coupled systems.27 Moreover, the fit of the social 
submodel to the mobility data is as good as the fit of the 
epidemic submodel to case notification data, despite the 
fact that our social model consists of substantially fewer 
equations and a similar number of parameters to that of 
our epidemiological model. This shows how modelling 
population behaviour during a pandemic can be 
accomplished with relatively simple models.

Several studies have used compartmental models to 
study prioritisation of age groups for COVID-19 vacci
nation.6–8 These models vary widely in terms of study 
populations, representation of population heterogeneity, 
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interventions, and assumptions about when vaccination 
starts. Similar to our results, Matrajt and colleagues8 
found that the level of pre-existing immunity strongly 
dictates outcomes: when pre-existing immunity is high, 
strategies that distribute the vaccine more evenly across 
age groups can be more effective than prioritising older 
age groups. Buckner and colleagues7 found that targeting 
individuals aged 60 years and older is best for reducing 
mortality. They assumed that vaccination begins in 
December, 2020, and they base initial conditions on case 
notifications in the USA in that month. Similarly, 
Bubar and colleagues6 showed that vaccinating those 
aged 60 years and older works best for reducing 
mortality for vaccine programmes starting in July, 2020, 
in Belgium, or August, 2020, in New York City. Our 
results are consistent with those of Bubar and colleagues6 
and Buckner and colleagues7 and for the scenario of 
January, 2021, vaccine availability. However, we found 
that more deaths could be prevented by first vaccinating 
other age groups for vaccinations starting in 
September, 2021. Such a late vaccine start date was not 
analysed in the aforementioned studies,6,7 although their 
findings might change if the models were reinitialised to 
accommodate vaccination starting in September, 2021.

The under-performance of the youngest-first strategy 
occurs because in populations with strong age-assortative 
mixing,28 the indirect benefits of vaccination are wasted if 
vaccination is first concentrated in specific age groups 
before being extended to the rest of the population, 
whereas the oldest-first strategy is less affected by this 
because the COVID-19 case fatality rate is higher in 
people aged 60 years or older.

Our analysis was limited by its focus on prioritisation of 
age groups. We did not model other sources of heterogeneity, 
such as geography, socioeconomic status, sex, or race—all of 
which are important determinants of disease burden in this 
highly unequal pandemic. We did not model outbreaks in 
long-term care facilities, where the dynamics of transmission 
and indirect protection differ from those of the general 
population. Similarly, we did not distinguish health-care or 
other essential workers. However, many of these individuals 
are working-age adults, and thus vaccinating them first 
among other working adults is consistent with our uniform 
and contact-based strategies. For our baseline analysis, we 
assumed that the vaccine blocks transmission as well as it 
prevents COVID-19 disease. However, in general, vaccines 
have differing efficacy in this regard.29 These differences can 
reduce the relative benefits of strategies intended to interrupt 
transmission. We used a single population model, but 
interpopulation mobility can influence transmission 
dynamics: a large influx of infectious persons from another 
population can weaken the indirect protection afforded by 
vaccines.

We used changes to baseline time spent at retail and 
recreational outlets to represent population adherence to 
non-pharmaceutical interventions. Such mobility data is 
an imperfect proxy for adherence to non-pharmaceutical 

interventions and will not capture mask use or 
handwashing. We did not have high-resolution mobility 
data on these practices, although, in future, it might be 
possible to infer information about these practices by 
combining information from phone surveys with online 
social media data. Our simple ascertainment process in 
the model was designed to implicitly capture the effects 
of SARS-CoV-2 PCR testing, contact tracing, and 
isolation. However, without explicitly representing them, 
it is impossible for us to study combined strategies of 
vaccination and testing, tracing, and isolation, or to 
anticipate how specific changes to these practices would 
influence our findings.

Finally, the model was parameterised with data from 
Ontario, Canada. The projected effect of the four vaccine 
strategies might differ in settings with different 
epidemiological or social characteristics. For instance, 
the emergence of a more transmissible strain of 
SARS-CoV-2 would weaken the indirect protection 
provided by a vaccine that reduces transmission. At the 
same time, we note that our findings rely upon a robust 
epidemiological effect that occurs when Reff becomes 
sufficiently small. Therefore, the only thing that might 
change in other settings is the timing of the switch to 
vaccine strategies that interrupt transmission.

We opted for a coupled social–epidemiological model 
on account of the importance of interactions between 
population behaviour and disease dynamics for the 
control of COVID-19 in the absence of preventive 
pharmaceutical interventions. Our model generated 
significantly different projections in our sensitivity 
analysis in which population behaviour was assumed to 
be constant (appendix pp 31–32), which is similar to 
conventional approaches to transmission modelling. Our 
social model is less complicated than our epidemiological 
model and, despite this, the coupled social–epide
miological model fitted population-level behaviour as 
readily as it fitted the epidemic curve. Predicting 
behaviour is fraught with uncertainty, but so is predicting 
an epidemic curve. Moreover, digital data on behaviour 
and sentiment that can be used to model social dynamics 
are increasingly available.30 Thus, we suggest a role for 
more widespread use of social–epidemiological models 
during pandemics.

To apply these results to COVID-19 pandemic mitigation, 
large-scale seroprevalence surveys before the onset of 
vaccination could ascertain the level of a population’s 
natural immunity. Age-structured compartmental models 
could be initialised with this information to generate 
population-specific projections. In populations in which 
SARS-CoV-2 seropositivity is high because of wave of cases 
in autumn or winter, 2020, vaccinating to interrupt 
transmission might reduce COVID-19 mortality more 
effectively than targeting vulnerable groups.
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